Is A Machine Learning The Next Step Of Smart Learning?

Reading Time: 3 minutes

Is A Machine Learning The Next Step Of Smart Learning?

2015 was rife with stories of ML and self-driving cars. Again a decade ago people were abuzz with robots doing the repetitive tasks, and human intervention being all about seasoned judgment for complex tasks. And then, cars were self-driven and computers really proved that they were fast approaching the machine learning course of human intelligence with self-learning algorithms and AI taking over a data-driven world.

Both AI and ML started with helping the human coded programs helping computers spot data patterns and inform algorithms which made foresight, insights, decisions and data-driven predictions. And then, the volumes of data became huge and machines needed a machine learning course to be able to help humans with cleaning and sorting the data.

 

So self-learning and deep learning algorithms soon taught the AI-driven computers to get smart and self-learn. As data became larger, their ability to accurately parse and clean data and provide insights increased. And so, we developed new self-learning ML algorithms which are the latest weapons against terrorism, cybersecurity, climate change, and cancer applications.

The Master Algorithm authored by Pedro Domingos, claims machine learning is the new basis and infrastructure for all applicational algorithms. He described it as the Higher Education switchboard. When data privacy became an issue in the UK in 2014 the US K-12 dialogue led to concerns in over-testing and by the end of the year, more than a hundred vendors of EdTech voluntarily signed the pledge for data privacy.

The series on SmartParents led with the argument that personalized learning is data-based and that parents with access to such data should decide on the privacy of the data. The policymakers were forced to embrace both data privacy and personalization.

Today ML and Big Data techniques are part of our lives and play a big role in informal and formal education. Let us see how we can make learning smart with machine learning. Below we list the areas and resources available to parents and teachers alike for

1. Learning data analytics and applications in a machine learning course that can help track student knowledge while recommending further learning steps. Here are some resources for learning systems that are adaptive.

Ex: ALEKS, DreamBox, Knewton and Reasoning Mind. Here’s a treasure for game-based learning:  Mangahigh and ST Math.

2. Beginning learning on content analytics that is used to optimize and organize content-modules.

Ex: IBM Watson Content Analytics and Gooru.

3. Scheduling for math learning that teams students needing help with teacher resources in real-time and dynamically.

Ex: NewClassrooms which uses ML and data analytics to schedule mathematics learning sessions.

4. Scoring and grading systems to score and asses on a large scale the student answers to the computer and other assignments and assessments: The grading could be peer grading or automatic ML grading.

Ex:  Lightside by Turnitin and WriteToLearn by Pearson help detect plagiarism and score essays.

5. To identify new opportunities through tools for process intelligence which analyze both big unstructured and structured data while enabling the visualization of work-flow.

Ex: Clarity from BrightBytes provides a strength gap analysis by reviewing best practices and research to build evidence-based frameworks.

IBM SPSS  and Jenzabar are systems for ERP-Enterprise Resource Planning which help the formal higher education schools and institutions in enhancing campus security, improving financial aid, predicting enrollment, and boosting student retention.

6. In helping match schools and teachers like TeacherMatch and MyEdMatch which harmonize online the recruitments of teachers.

7. For learning data mining and predictive analytics from experts try Map patterns of expert teachers and Improve learning, retention, and application articles.

8. For a host of applications in the back office are school bus scheduling EDULOG, Evolution, and DietMaster.

Parting Notes:

There is no doubt that the earlier you learn the more skilled you become. To ensure smart learning in ML every student and faculty member must learn at the earliest the impact of ML, AI, and Big Data. No matter what the pathway your learning curve should be enhanced with skills at the earliest.

Do you want to join a machine learning course at the Imarticus Learning Academy where data scientists hone their skills in AI, Big data and ML? Their courses also include personality development modules and train you in the soft skills required to emerge job-ready and with the right skill sets.

Bots In Learning AI And Personalized Learning Experience

Reading Time: 3 minutes

Bots In Learning AI And Personalized Learning Experience

The class sizes keep increasing with compulsory education and teachers are often facing many challenges in giving attention and help to the large numbers of students. A big challenge like this has been simplified by incorporating computer programs that allow each student to follow his own pace and learning curve.

Since the ideal teacher-student ratio has long been overtaken, a lot of educational instructors have unobtrusively introduced AI and ML to help with self-scoring assignments, computer-aided assignments and course review modules and videos that help the learning process which tends to be different in style, pace, and manner of learning in each individual student.

However such early initiation has led to students thinking of the quickest and easiest way to beat the system. This was supposed to be a part of the personalized learning process which probably needs a review given that AI and a machine learning course have a huge role to play in the future of technologies.

Learning Bots:

The newer methods of experiential learning at educational institutions use advanced techniques of AI, machine learning and deep learning in instructing and teaching like Chatbots and learning bots.

A few examples of such learning bots are:

  • Botsify is a suite of bots that have bot assistants like the tutoring bots, FAQ bots and more.
  • Mika is a math bot tutor based on AI used widely in schools and higher education institutions.
  • Snatchbot helps administrators and teachers with templates to help customize a bot to the classroom needs and subjects.
  • Ozobot is a specialized coding bot.

AI has thus personalized the teaching and learning experience by incorporating a machine learning course for bots to enable their functioning in the field of education and instruction.

Learning supports with AI:

Individualized learning modules can help find knowledge gaps and personalize the learning materials to fill in the gaps. By so adjusting the learning rate no student in a class is way ahead or too far back on the learning curve. Since learning styles, rates and methods may vary over each student, adaptive learning scores by understanding and identifying the gap in learning and taking corrective action before it is too late.

A differentiated AI style of learning deals with the most effective style to help the student learn. Adaptive AI-based learning curates the learning exercises matching them to the student’s needs and knowledge gaps. Competency-based AI and machine learning course tests aid the students to gauge their learning levels and progress from thereon. Using all these three types of learning AI can test how well the students can adapt their learning to applications of it and thus promote the progress of students based on individual interests.

Tutoring help:

The bots have become extremely popular and the future will probably have specialized tutoring bots where the learners can ask questions and receive answers in real-time. Chatbots, tutoring bots and even bots for teachers to help score examinations, assess large volumes of answer sheets and more are being used to improve the learning and educational process. Tweaking the earlier bots have led to specialized bots that even suggest and provide resources specific to a learning style.

Administrative tasks aids:

Teaching is a challenge and scoring and grading are tasks that are repetitive and time-consuming. Multiple choice questions and online testing are AI forms of grading already in use where learning responses need not be essentially written responses. Thus a lot of paperwork and unnecessary wastage of time is eliminated.

Since bots are able to quickly analyze the responses, feedback can be near-instantaneous. Teachers can now get truly involved in teaching and rectifying the lacunae in the learning process. Besides, the teachers can also get recommendations on how to rectify the issues, what learning materials to use for personalizing the process and much more to help herd the students towards the right levels of comprehension and skills required. This could also be used for learning processes of differently challenged students.

Concluding notes:

Both bot technology and its AI technology has started the process of personalizing and improving the education system of learning. Today bots are not new to students who can exploit their benefits at will and at their own pace to learn advanced subjects. Such advancements in AI, ML and bot technologies spur demand for professionals in this emerging field which has immense potential. Would you like to do a machine learning course at Imarticus Learning and join the ranks of the highly paid professionals who face no dearth of jobs? Start today. Hurry!

For more details, you can also contact to our Live Chat Support system or can even visit one of our training centers based in – Mumbai, Thane, Pune, Chennai, Bangalore, Hyderabad, Delhi, Gurgaon, and Ahmedabad.

AI and Food: Safer and More Tasty Food?

Reading Time: 4 minutes

 

In February 2019, Tristan Greene wrote an article in The Next Web and quoted an IBM research study that suggested that artificial intelligence could improve the taste of food by creating new hybrid flavors. It took a part of the Internet by storm, less for its clickbait headline and more for its actuality. Greene was writing facts when he began his article with this: “AI will soon decide what we eat”.

Let’s explore the what, the why, and the how. We are sure you already know the why so we’ll mostly skip it.

Artificial Intelligence + Food. Really?

That seems to be a sensible question but not a surprising one. AI and machine learning have already taken over the world with them influencing everything from blockchain to computer vision to chemistry. So why not food production?

Now IBM, other tech giants, and new startups are changing that by feeding AI systems millions of different types of data in the areas of sensory science, consumer preference and flavor palettes to help generate new or advanced flavours that can literally put your mouth on fire. Or make it drool all day. Or make even the most tasteless food taste like heaven. Kale and quinoa, anyone?

The food industry has already scrambled to use artificial intelligence and machine learning for its sake. Take, for example, the world’s first automatic flatbread-making robot called Rotimatic which limits user control to just putting the ingredients into the appliance. It does all the dirty work by itself and claims to bake hot flatbread in under a minute.

Not just kitchen appliances, the food that we eat and its ingredients are also being influenced by AI and other techniques even as we debate whether genetically modified food products are safe for human consumption. Researches involving changes in the cooking style, omission or replacement of certain ingredients, and others have all been suggested by AI-driven tools. While none of them have hit the shelves yet, this new tool by IBM looks like it’s just around the corner.

According to the study, IBM and a company pioneering in flavors and food innovation named McCormick & Company created a novel AI system whose aim is to create new flavours. Published in February 2019, the blog post promised that some of its findings will be available on the shelf by the end of the year. While it is September and we still wait, let’s have a look at the scope of AI in the food industry.

How Does AI Help Food Become Better?

To answer this question, Greene uses the analogy of Google Analytics tools. Publicly available data like recipes, menus, and social media content about these recipes along with trends in the food industry are fed to AI systems. These then generate fresh, actionable insights.

An example is a tool that can show restaurants what the most popular food will be every month for the next 12 months. If this is a possible scenario, the restaurant can prepare itself and maybe even surprise its customers into submission, eventually becoming popular and running a successful service.

The same goes for farming models where new techniques are needed to plant and grow more produce as the population gets out of the window due to lack of space. Everyone involved in researches dealing with AI and the food industry is positive about what can be done.

Existing data is of prime importance if such tools are to bear any results. In the above example involving IBM, the tool is able to create new flavors because of the existence of data on different flavours that we currently have. In a way, AI is only helping us discover flavors sooner.

AI Everywhere in the Food Industry

Till now, we spoke about the use of AI in farming, food recipes, and restaurants. But what about food processing? Media suggests that AI is everywhere – from its help in sorting foods to making supermarkets more super.

According to a Food Industry Executive, there are a lot of examples that highlight the significance of AI in the food industry. Some of them are listed below, thanks to Krista Garver:

  • Food sorting – AI helps understand which potatoes (by their size and quality and age) should be made into French fries and which ones are suitable for hash browns or potato chips or some other food. This involves the usage of cameras and near-infrared sensors to study the geometry and quality of fruits and vegetables
  • Supply chain management – This is obvious: food monitoring, pricing and inventory management, and product tracking (from farms to supermarkets)
  • Hygiene – AI can detect if workers are wearing all the necessary equipment. Since AI tools are fed data about what constitutes 100% hygiene, they can constantly check the attire of workers and rate them on the basis of their current clothing. Is a worker not wearing a plastic hat? An alert goes to his manager
  • New products – This is similar to the IBM example seen above. Predictive algorithms can be used to understand what flavors are most popular in people of certain age groups. Why do kids love Kinder Joy? What is or are the ingredients that make them go bonkers?
  • Cleaning – This is the most promising one where ultrasonic sensing and optical fluorescence imaging can be used to detect bacteria in a utensil; this information can then be used to create a customized cleaning process for a batch of similar utensils.

Conclusion

It is mind-numbing (mouth-watering, too?) to visualize these products actually coming into form in a few years. Which is why there is no doubt that AI will revolutionize the food market. The only question that then remains: has the revolution already begun now that you can’t say no to a bunch of addictive products?

How To Pay Taxes Without Leaking Your Personal Data Using Machine Learning?

Reading Time: 3 minutes

How To Pay Taxes Without Leaking Your Personal Data Using Machine Learning?

The cutoff date to file taxes in the US (April 15th) teaches all taxpayers many a lesson. Did you know that 1 in 3 Americans wait until April each year and get stressed when filing taxes? The major fallout of this behavior is that besides the stress and worry, one is tempted to cut corners and hurry through tax filing thereby exposing themselves to potential personal data loss or stealing.
Think about this fact. Tax scams saw a 60 percent increase in 2018 in comparison to the previous three years where the rates had actually shown a decline. That is why we are going to explore what we need to do when we file taxes to ensure safety, privacy, and efficiency of the machine learning course working behind the filing of our taxes.

Password strength:

Strong passwords can protect your online tax account. Use the IRS recommendation of a long password with at least one uppercase letter, one symbol, one lowercase letter, and one number. Avoid using your name, child’s name, pets name, DOB, school name and such easily discoverable data. Once they guess your password your account can be comprised at their will and social media sites like Facebook, Instagram, Twitter and such are always used by these scam generators to study your profile.

Watch for phishing:

Online phishing by overseas cyber criminals use websites which look very like the original IRS site to scam you. Once you enter your details on the link sent to you your data has been compromised and security breached. Here’s what to look for. An email that claims you will face legal action and prompts you to use the link to provide your personal details. Don’t panic.
Also look for giveaways like letters starting without your name or the ‘Dear Customer’ from the so-called tax department officials, poor sentence construction, grammatical errors, or threats of penal action. Periodically check your account for activity and never click on the links!

Do not use your phone for transfers:

If ever you receive phone calls from the IRS claiming you are a defaulter or have to pay a court-fine and need you to pay through phone transfers then call the IRS directly at 800-829-1040 and speak to a legitimate IRS staff member. Go ahead and block such calls as the banks, IRS or any other financial institutions have long since stopped using phone calls to call you. Even when you panic, remember smart frauds can phish over the phone with misusing the Machine Learning Course and reflecting the 911 number on your display.

VPN authentication:

Always use a VPN. The service uses remote server encryption and can go a long way when you use WiFi networks both untrusted and public networks to send your tax returns to the IRS. Hackers will need to work very hard to get past the encryption and this ensures the security of your personal data.

Stay clear of great offers:

In the USA 2 in 3 taxpayers find tax-filing complicated and use a tax returns professional to file their returns. Especially so, when in a hurry! The major issue here is to distinguish between the ethical and legal professional and the scam-master posing as one just to steal and hijack your personal data. That’s why it’s always better to plan in advance and know your tax- professional’s credentials before you employ them.
The American saying that there is no free lunch anywhere is true here too. Beware of tax professionals offering to get you huge refunds especially when you know that your financial position is not so good. Does that offer sound like a bonus from heaven? Then stop! It is a scam. If your tax professional is refusing to issue a receipt for payments, then beware. No references, only cash payments or lacking testimonials are also good cause for concern.
To watch your step, ask the tax professional for his Preparer Tax Identification Number or PTIN which needs to be mandatorily mentioned with their signature when they file returns on behalf of you. Stay abreast of the latest scams and fraud methods where the machine learning course behind your personal data could be exploited for unlawful gain.
Conclusion:
Tax season or otherwise the above-mentioned measures are effective and not time-consuming to enforce all year round while preventing data loss and personal identity thefts. To learn more about cybersecurity and the machine learning course behind the tax scams do a course at the reputed Imarticus Learning Academy. All the best with your tax returns!
For more details regarding this in brief and for further career counseling, you can also contact us through the Live Chat Support system or can even visit one of our training centers based in – Mumbai, Thane, Pune, Chennai, Banglore, Hyderabad, Delhi, Gurgaon, and Ahmedabad.

How Important Is An Application Domain In Regards To Post-Graduate In Machine Learning?

Reading Time: 3 minutes

How Important Is An Application Domain In Regards To Post-Graduate In Machine Learning?

If you wish to do ML research, either academic or in the industry, then you need to be a great coder and get to working with the elite in the ML domain. But, for the following reasons, you would still have the advantage.

  1. ML research is the right path since there is an acute shortage of qualified practical doctorates in ML. Spending a few years under the best in the domain of ML can actually help improve your knowledge and practical skills through effective mentorship. There are ML mentors like Geoffrey Hinton, Nando Freitas, Yann LeCun, Andrew Zisserman, Andrew Ng, etc who are well known for their work and contribution to research.
  2. Attaining proficiency in Machine Learning Training needs proficiency in data, mathematics, statistics, linear algebra, calculus, differentiation, integration, and a host of other subjects to do research in the ML domain. If you have these it still takes 3-5 years before you get to writing effective algorithms.

Most software engineering jobs in industries do not provide you time for reading or research. Further, you will lose out on practicing your development skills. Since the ML programs on the market today are more or less ready to use, it makes perfect sense to learn Machine Learning Course.

To answer which way you should proceed read on. One can opt for any of the two ways of applying ML. To research and applications. Let us explore these choices.

ML research:

Learning about the science of machine learning is actual research. An ML researcher is constantly exploring ways to push the scientific boundaries of the science of ML and its applications to the Artificial Intelligence field. Such aspirants do have a post-graduation or even a Ph.D. in CS with frequent and periodical publications of their research presented at the top ML conferences and seminars. They are visible and popular in these research circles. The ML researcher is looking for something to improve upon and thanks to their efforts technology are always cutting edge and progressing in pace with developments.

When you need to tweak your applications and seem to go nowhere with it, it is these ML researchers who can get you up from 95 to 98 percent accuracies or more by offering you a personalized and customized solution. The ML researcher really knows his wares well. The only drawback is that he may never get the opportunity to actually deploy his solutions in applications. He knows the theory and is devoid of practice in SaaS delivery, deploying to production or translating the research finding into a practical app.

Machine Learning application:

In comparison to the researcher, the ML application is about the engineering of ML. An ML engineer will take off from where the researcher left. He is adept at using the research and turning it into a valuable practical application or service. They are adept at services of cloud computing and services like the GCP of Google or AWS from Amazon. They are fluent in Agile practices and can diagnose and troubleshoot anywhere in the SDLC of the product.

These ML engineers are often not as recognized as the ML researcher for want of a decorated Ph.D. and referral citations. But they are the people you must go to if you want your customers to be happy with ML-driven products. These application engineers have years of experience and deployments of thousands of products to their credit.

Consult an ML application engineer before you deploy products or services in the market. Your decisions should be based on your business domain, the product or services on offer and the methods of delivering it to the targeted market.

Expected payouts:

The Gartner report states that by 2020 the domains of ML and AI will generate 2.3 million jobs. Digital Vidya claims the ML career is great since the inexperienced freshmen land jobs that pay 699,807- 891,326 Rs. If your domain expertise is in data analysis and algorithms your salary could be 9 lakh to Rs 1.8 crore Rs pa.

Conclusion:

For most teams/businesses and teams, ML has many apps that are applicable to its specific needs. You do not need to reinvent it but must know how to use it better. Its an awesome tool for the enterprise and customer’s too! Learn ML at Imarticus Learning. Besides learning how to tweak the ML algorithm through hands-on assignments, project work, and workshops you get assured placements, soft-skill, and personality development modules with a resume writing exercise. Hurry and start today!

How Do You Start Learning Artificial Intelligence? Is it Possible to Get Research Work in The Field of AI?

Reading Time: 3 minutes

The last decade saw the introduction of Machine Learning Training, Deep-Learning and Neural networks in AI to acquire the capacity to reach computational levels and mimic human intelligence.
The future scope of Machine Learning appears bright with ML enabled AI being irreplaceable and a composite part of evolving technologies in all verticals, industries, production means, robotics, laser uses, self-driven cars and smart mobile devices that have become a part of our lives. It thus makes perfect sense to learn Machine Learning and make a well-paying career in the field. Since the early 50’s a lot of research has gone into making these developments possible, and the trend for continued research into AI has made it the most promising technology of the future.

Why study AI:

AI rules and has become a reality in our lives in so many different ways. From our smartphones and assistants like Siri, Google, Alexa etc, the video games and Google searches we do, self-driven cars, smart traffic lights, automatic parking, robotic production arms, medical aids and devices like the CAT scans and MRI, G-mail and so many more are all AI-enabled data-driven applications, that one sees across verticals and without which our lives would not be so comfortable. Fields like self-learning, ML algorithm creation, data storage in clouds, smart neural networking, and predictive analysis from data analytics are symbiotic. Let us look at how one can get AI skills.
Getting started with AI and ML learning:
To start AI learning the web offers DIY tutorials and resources for beginners and those who wish to do free courses. However, there is a limit to technical knowledge learned in such ‘learn machine learning’ modules, as most of these need hours of practice to get adept and fluent in. So, the best route appears to be in doing a paid classroom Machine Learning Course.

Here’s a simple tutorial to study ML and AI.

1. Select a research topic that interests you:

Do brush through the online tutorials on the topic on the internet. Apply this to small solutions as you practice your learning. If you do not understand the topic well enough use Kaggle the community forum to post your issues and continue learning from the community too. Just stay motivated, focused and dedicated while learning.
2. Look for similar algorithm solutions:
The process of your solution would essentially be to find a fast solution and it helps when you have a similar algorithm. You will need to tweak its performance, make the data trainable for the ML algorithm selected, train the model, check the outcomes, retest and retrain where and when required by evaluating the performance of the solution. Then test and research its capabilities to be true, accurate and produce the best results or outcomes.

3. Use all resources to better the solution:

Use all resources like data cleaning, simple algorithms, testing practices, and creative data analytics to enhance your solution. Often data cleaning and formatting will produce better results than self-taught algorithms for deep learning in a self-taught solution. The idea is to keep it simple and increase ROI.

4. Share and tweak your unique solution:

Feedback and testing in real-time in a community can help you further enhance the solution while offering you some advice on what is wrong and the mentorship to get it right.

5. Continue the process with different issues and solutions:

Make every task step problem you encounter an issue for a unique solution. Keep adding such small solutions to your portfolio and sharing it on Kaggle. You need to study how to translate outcomes and abstract concepts into tiny segmented problems with solutions to get ahead and find ML solutions in AI.

6. Participate in hackathons and Kaggle events:

Such exercises are not for winning but testing your solution-skills using different cross-functional approaches and will also hone your team-performance skills. Practice your collaborative, communicative and contributory skills.

7. Practice and make use of ML in your profession:

Identify your career aims and never miss an opportunity to enroll for classroom sessions, webinars, internships, community learning, etc.
Concluding notes:
AI is a combination of topics and research opportunities abound when you learn to use your knowledge professionally. Thus the future scope of Machine Learning which underlies AI contains newer adaptations which will emerge. With more data and emerging technological changes, the field of AI offers tremendous developmental scope and employability in research and application fields to millions of career aspirants.
Do a machine learning training at Imarticus Learning to help with improving your ML practical skills, enhance your resume and portfolio and get a highly-paid career with assured placements. Why wait?

What are The Top 10 Algorithms in Machine Learning?

Reading Time: 3 minutes

Machine learning is the essential part of the developing technology of Artificial Intelligence. It analyses enormous amounts of data and comes at customized predictions which can help the user to deal logically with an overload of information.

A student of Machine Learning course must be aware of the need of making algorithms since these are what enhance the self-teaching capacities of the system. There are three primary techniques to design an algorithm- supervised, unsupervised and reinforced.


Also Read: What is The Easiest Way To Learn Machine Learning?

Here is a list of the top 10 algorithms which every Machine Learning student must know about –

  1. Decision Tree is one of the most comfortable supervised structures that is very useful to form deep connections and is based on questions in Boolean format. The fabric is systematic and easy to understand, and it is beneficial to determine model decisions and outcomes of chance-events.
  2. Naive Bayes is a simple and robust algorithm for classification. The “naive” term implies that it assumes every variable to be independent which can turn out as impractical sometimes. However, it is a great tool that is successfully used in spam detection, face recognition, article classification, and other such operations.
  3. Linear Discrimination Analysis or LDA is another simple classification algorithm. It takes the mean and variance values across classes and makes predictions based on the discriminated value assuming that the data has a Gaussian curve.
  4. Logistic Regression is a fast and effective statistical model best used for binary model classifications. Some real-world applications of this algorithm are scoring credit points, understanding rates of success in market investments and earthquake detection.
  5. Support Vector Machines or SVMs are a well-known set of algorithms which is binary based. The principle is to find the best separation of variables in a hyperplane. The support vectors are the points which define the hyperplane and construct the classifier. Some successful sites to try this algorithm is image classification and display advertising.
  6. Clustering algorithm follows the unsupervised technique, and it works on the principle of determining the more similar characteristics of nearby parameters to patch themselves up in a set cluster or group. There are different types of clustering algorithms such as centroid-based algorithms, dimensionality reduction and neural networks.
  7. Linear regression is a very well understood form of the algorithm which works on quite the same mathematical formula of a linear equation in two dimensions. It is a well-practised algorithm to determine the relationship between two variables and can be used to remove unnecessary variables from your target function.
  8. Ensemble methods are a group of learning algorithms working on the principle of predictive analysis. They construct a chain of classifiers such that the final structure is established to be a superior one. They are very efficient regarding averaging away with biases in poll decisions, and the algorithms are entirely immune to the problem of over-fitting.
  9. Principal component analysis or PCA employs an orthogonal transformation to convert relatable variables into a set of uncorrelated variables called principal components. Some essential uses of the method are compression and data simplification
  10. Independent Component analysis or ICA is a statistical method to determine underlying data which come obscured in data signals and variables. Relative to PCA, this is a more powerful method and works well with applications like digital images, documented databases and psychometric detections.

While no algorithm in itself can be guaranteed for a specific result, it’s always ideal to test multiple algorithms cumulatively. The ultimate task of an algorithm is to create a target function which can process a set of input into detailed output data.

Related Article :

How important is the R programming language nowadays?

Reading Time: 2 minutes

R is a popular programming language used for statistical computing and graphics by developers. This open sourced tool is not only just a programming language but also an excellent IDE. One important field of its applications is data analysis. Statisticians and data miners largely prefer R to develop their statistical software. However, R is not as popular as programming languages such as Java or Python. This article discusses the importance of R in the current era where data is everything.
How important is R?
We know that programming software like python offers an easy to understand syntax and higher versatility. Yet, R is preferred among data analysts. The reason for is that R was designed for statisticians. Hence R comes with field-specific advantages such as great data visualization features. A large number of major organizations are found using R in their operations. Google not only uses R but developed the standards for the language which got wide acceptance.
Revolution Analytics, kind of a commercial version of R was purchased by Microsoft and they provided servers and services on top of it. So, in general, despite the steep learning curve and uneasy syntax, R has its own advantages and the industry has recognized it very well.
In the opinion of experts, R is expected to remain as an indispensable resource for the data scientists for a very long time. The wide range of pre-defined packages and libraries for the statistical analyses will keep R in the top. The introduction of platforms such as Shiny has already resulted in increased popularity of R, even among the non-specialists.
So, Should You Continue Taking that Course Teaches Machine Learning via R?
It is known that every professional with a machine learning certification has huge career opportunities waiting ahead. But it is important to possess the exact skills the employers are looking for. So, is R such a skill wanted by employers? Well, it is observed that organizations are moving towards Python at a slow pace. In academic settings and data analysis R is still most popular, but when it comes to professional use, Python is leading. Python has achieved this by providing substantial packages similar to R. Even though most machine learning tasks are doable by both languages, Python performs better when it comes to repetitive tasks and data manipulation. A better possibility of integration is another advantage of Python. Also, your project may consist of more than just statistics.
It is recommended to start learning Python if you haven’t spent much time with your Machine Learning course that teaches through R. After learning python, you can use RPy2 to access the functionalities offered by R. In effect, you will have the power of two different languages in one. Since most of the companies have production systems ready for this language, Python is always production-ready. Even if you feel like learning R after learning RPy2, it is pretty easy to do. But moving to Python after R is relatively much difficult. If you are already too deep in R, ignore everything and focus on it.

What are good ideas for Hackathon in Machine Learning?

Reading Time: 2 minutes

 

Hackathons are not merely fetes where you can show off your skills but are also huge opportunities aimed at engaging gainfully and celebrating solving business issues and problems.

The Indian hackathons are corporate sponsored glitz-and-swag events where developers can compete and push boundaries by tackling industry-relevant issues in an environment that is supportive, has fireside learning, exposure to the latest gadgetry and quite like a convoluted career fair.

Job opportunities, internships, different vertical exposure, startup offers, mentorships, peer interactions, rights to brag and prizes abound. For the ML starters, it can be the pitch to learn on, join a community, hone skills, get ideas, and find the right tools and projects in coding, discover the best training and even get placed.

Take your pick from popular and reputed hackathons like MachineHack, TechGig, Hackerearth, Kaggle, and OpenML. Here are some hackathon ideas that can be advantageously used.

  1. Reach out to the online community through online ongoing hackathons where tech and ML beginners can participate, work on third-party APIs and resolutions and learn from the community. Alexa is being tweaked by Amazon in this manner.
  2. Permit multiple categories, levels, and submissions: Teams can participate in multiple category hackathons as individuals or by submitting multiple solutions at hackathons. This builds team spirit, allows multiple submissions in various categories and promotes working in communicative teams.
  3. A balanced cross-functional team yields better results: This secret in hackathons helps teams compete better, ensures better team coordination, provides a platform for the newcomers to work with the experienced and definitely satisfies learning for the whole team. Go for the prize with your team!
  4. Count results to be superior to techniques:  All hackathon participants should use their stack wisely and well, and showcase in the prototype their algorithm and skills in programming. Many a failure occurs with developing scalable models instead of the prototype, using complex databases, algorithms, and a limited stack to develop the prototype in the specified timeframe.
  5. Hackathons are about prizes for quality problems: Nobody expects a complete solution. What does impress is a simple tweak, innovation or prototype that has the potential to solve and provide a scalable solution?
  6. The product demo is essential: While the presentation has a bearing on the success and winning becomes addictive the product demo is crucial as it sums up the learning, efforts, and technology used. The real winners are those who compete and learn from their mistakes.
  7. Follow the hackathon code: The opportunity to learn should not cause problems for others. Follow the guidelines and conduct codes to provide a supportive environment for all.
  8. Exploit the learning opportunity: To break into the ML field you will need to do a machine learning course and get practical machine learning training with a reputed institute like Imarticus. Then move on to hackathons because these are events akin to sprints where hardware/software is tweaked over the next 24 to 48 hours. The skills and tasks are graded and provide participants with the chance to come up with quick solutions without needing code understanding. Do explore the workshops and 101 sessions on coding to help pick-up the requisite skills.

On a concluding note, there will be various platforms hosting events and hackathons both offline and online which provide participants for everyone.

How Should You Learn Python For Machine Learning And Artificial Intelligence?

Reading Time: 2 minutes

Python is essential for those looking to get into machine learning and artificial intelligence. It is one of the easiest languages to learn and its range of dynamic semantics is unparalleled. It is easy to read and has reduced the cost of program maintenance. Artificial intelligence allows computers and software to ‘learn’ and identify patterns in order to predict outcomes and make conclusions without human interference or supervision. An example of this is the auto-reply feature on Gmail which ‘reads’ emails and predicts the reply. A machine learning engineer develops intelligent algorithms using data that has to be collected, assembled, and arranged first.
Learning Python is not just important, it is essential to machine learning and AI. There are several courses available online where you can get a Python certification and you should pick one that suits your level of expertise. If you are an absolute beginner, you should choose a course that will help you master the basics of Python. You will also learn how to use popular scientific libraries that support Python users.
The next step involves learning about Python in the scientific computing environment. As a machine learning engineer, one of your main tasks will be to work with large amounts of data. Python allows for intricate statistical modeling of said data. It works well with other programs and tools and allows for a wide range of interaction across different players.
An important area with Python learning is classification. Engineers have to be able to develop a model that classifies, identifies, and describes data classes in order to be able to classify unknown data in the future. It is one of the main forms of supervised learning and is an essential tool in your development of AI. Different types of classifier models include support vector machines, logistic regression, neural networks, and decision trees.
Regression is just as useful as classification and it also is an important form of supervised learning. However, unlike classification where there are distinct finite classes, regression works with predicting continuous numerical data.
When you are faced with data that does not have pre-defined classes, then your best tool is clustering. Simply put, clustering puts together data that are similar and separates the ones that differ. This type of data pooling is a form of unsupervised learning.
One of the best ways to learn the different aspects of Python is to learn by doing. There are several places online where you can practice your knowledge. You can also connect with other engineers and programmers and join a community to discuss and learn from others. Kaggle exercises and competitions are recommended to beginners who are looking for a challenge to flex their theoretical skills.
For those who are serious about machine learning, joining a reputed machine learning course will set you on the right path. The right machine learning training is intensive and allows you to learn hands-on with live projects. However, it is still recommended that you have some previous knowledge about Python, math, and statistics before venturing into these intensive courses.