Last updated on July 26th, 2024 at 11:54 am

What is data visualization?

Data visualisation is the art of representing data through visual elements. These data visualisation techniques include charts, graphs, maps, and much more. In today’s data-driven world, where information is overloaded, data visualisation is a game-changer. 

For instance, you have to analyse the sales data for a retail company. Traditionally, you will study a massive table with numbers. But data visualisation tools enable you to represent the same data through appealing bar charts, graphs etc. Data visualisation techniques help to see beyond raw numbers and assist in –

Understanding data visualisation techniques

There are different data visualisation tools and data visualisation techniques for data visualisation. Some of the top data visualisation techniques are:

Bar charts

Perfect for comparing categorical data and showing frequency or distribution. For instance, the sales performance of different products. Here, each bar represents a product’s revenue.

Line Graphs

Great for displaying trends and patterns over time. For instance, stock market trends throughout the year.

Pie Charts

Ideal for illustrating parts of a whole or percentages. For example, to represent the market share of different smartphone brands in a city.

Scatter Plots

Excellent for visualising the relationship between two continuous variables. For example, the connection between advertising expenditure and sales.

Heatmaps

Effective for displaying the density or size of values across a grid. For instance, population density across different districts of a city.

Some other data visualisation techniques include:

Best practices for data visualisation

The following are the best practices for effective data visualisation

Preparing data for visualisation

Preparing data for visualisation ensures data accuracy and integrity. It allows the users to draw reliable insights. Preparing data helps in:

Choosing the visualisations

Selecting appropriate visualisations based on data characteristics ensures clear and meaningful representation. Thus, choosing the right visualisations is crucial. So, here are the factors to consider:

Design principles

Design principles enhance the effectiveness and impact of data visualisations. The design principles play a significant role in improving user experience. Thus, keep the following pointers in mind:

Iterative design and feedback 

Iterative designing is the process of refining data visualisations. This approach helps to improve visualisations through repeated design cycles, testing, feedback, etc., making the data more accurate and insightful. The feedback can be from stakeholders, experts, or even end-users. Iterative design and feedback incorporation improve the usability and relevance of visualisations.

Master data visualization

Data visualisation is about more than just about pretty pictures. It’s about letting the data speak visually. So, whether you are a graduate or a working professional, you can learn the art of data visualisation. With a job-oriented curriculum Data Science Course by industry experts offering a job guarantee, this live training program offers everything. From the fundamentals to real-world projects, this program on Imarticus Learning, a leading platform for learning, is a game changer! So, enrol in this Postgraduate Program In Data Science And Analytics today and become an expert tomorrow.