How Freshers Can Get Real-World Job Experience In Data Science

Reading Time: 3 minutes

Introduction

For most freshers, landing a Data Science job seems like a chicken-or-egg situation. You need to have hands-on work experience to get selected for such a job, but how do you get any work experience without first being hired?

By now, you must have heard, read or seen a lot about the scope for immense growth that a Data Science career can offer. However, for many aspiring Data Scientists, the reality appears to be hard-hitting.

The career potential of a Data Scientist is undoubtedly very rewarding once an individual gets the job, but getting the job without prior work experience is the main obstacle they face.  Below, we examine some practical solutions to this dilemma:

 Work on personal Data Science projects

Data ScienceThis is an interesting and highly practical way to gain real-life Data Science experience. Once you finish a project, you can showcase your work on a platform like GitHub. Focus on small projects, and try to demonstrate important Data Science skills in your efforts.

The advantages of working on your own project are that you gain hands-on experience in generating ideas, collecting data, cleaning data, analysing data and building predictive models.

Therefore, you gain a comprehensive understanding of the entire process. As far as possible, try to script clean codes and develop clear visualizations that potential stakeholders can find easier to follow.

Do not attempt to display too many skills at once, as you might end up unnecessarily complicating matters for your audience. Simple and small projects will illuminate the core skills you wish to draw attention to. For example, consider obtaining a complicated datasheet and cleaning it up. This simple project will demonstrate your prowess in:

  • Scoping a data project and formulating a suitable plan
  • Gathering data using different collection methods
  • Contemplating different data cleaning methods and choosing the most suitable one
  • Handling different data formats such as XML, CSV and JSON

 Contribute to open-source projects

The best way to enhance your coding skills and get hands-on Data Science experience is to join an open-source community. Providing solutions to projects that are already in progress will help you deal with real-world problems, while giving you a taste of what working in a Data Science team would be like.

As a member of an open-source community, you need to constantly communicate with the other stakeholders when making your contributions. Open-source projects are an excellent way to access Data Science libraries, such as NumPy, Pandas, Scikit-learn, and more. Above all else, being a part of these communities will help you build a professional network with relevant people in the Data industry, and also significantly add to your existing knowledge.

 Make tutorial / educational content

If you have confidence in your Data Science skills and knowledge, you can try authoring a Data Science blog feed, or creating tutorial videos that explain the core concepts of Data Science. These are excellent ways to highlight your abilities to prospective employers.

 In-person meetups

After you complete a Data Science course, in-person meetups can present great opportunities for face-to-face interactions with industry leaders and representatives. Meetups are essentially corporate events being held in your city, such as business conferences, presentations, seminars, expos or coding competitions.

Data ScienceThese events are excellent venues for networking with like-minded professionals who work for a range of different organizations. A simple Google search with keywords like Data Science meetups, along with the name of your city, will generate information about ongoing or upcoming events near you.

 Volunteer for a good cause

Many non-profit organizations need Data Science professionals to volunteer for them. This is a good way to give back to society, while at the same time, you could get to work alongside experienced Data Scientists who can guide you and offer valuable career advice.

The tasks you perform can be showcased in your resume, and will be considered as valid work experience. Poverty, Environmental Protection, Equal Education, Public Health and Human Rights are some of the non-profit areas that you can contribute to.

 Conclusion

The career scope for a Data Scientist is tremendous, but it often proves difficult to get a Data Science job without a certain amount of relevant work experience. The key is to show recruiters that you possess the requisite expertise and skills to do justice to the job if you are given the opportunity, and the steps listed above will go a long way towards accomplishing that.

SQL For Data Science: One-Stop Solution For Beginners!

Reading Time: 4 minutes

Data science has earned the reputation of being the most promising job of the times, even during this pandemic crisis. With the current changes in the global business and economic background, data science has proven to be a more relevant career opportunity. If you are following the subject and have a keen interest in making a data science career choice, you must have heard about SQL as well.

SQL online trainingSQL is used to access and manipulate data. It helps to store data, access whenever you need it, and retrieve if need be. SQL training will give you a much-required head start in the highly competitive job market.

Why is SQL Important in Data Science?

Today’s business decisions are data-driven. Data is generated all through the day, across the globe. The amount of data generated every day is simply astonishing – about 2.5 quintillion bytes. This underlines the enormity of the subject we are dealing with.

Now that data is available, what is the next thing? How are you going to make sense of this huge amount of data and use it to make a decision? Data science steps in here. You need to collect, organize, and process them to make sense of the data and to derive insights. To do this, you need tools.  This is what SQL does. It is a querying language used to store, access, and retrieve data.

What is Structured Query Language (SQL)

SQL is a language that is primarily concerned with managing relational databases. SQL is the typical API for such data tables. While using SQL, data can be accessed and managed without changing the databases. You can perform a variety of actions including updating, querying, deleting, and inserting data records. Oracle, MySQL etc. are examples of such databases which use SQL.

SQL works based on some simple commands that are associated with different data tasks. These commands can be used to create database and tables, insert, delete, or update data, to alter table and database, drop table and index.

How to Create a Table Using SQL

Let’s see how to create a table using SQL commands. Remember to use UPPERCASE letters for SQL commands, and use semicolons to terminate commands.

data science careerYou may follow the steps given below to create a database.

Step #1 Creating a Database using SQL

CREATE DATABASE: Use this command to create a database “Test”.

USE: This command activates the database.

CREATE test;

USE test;

Your database named test is ready and activated.

Step #2: Creating a Data Table

It is as easy as typing a command to create a table, just like the way you created the database. All you need to do is to decide on the variables you want to include in the table.

SQL online trainingSuppose you want to create a table with the following features:

  1. Serial Number (SL)
  2. Purchase item
  3. Cost
  4. Number of pieces

You can use the command CREATE TABLE to create the table. The four features of the table are SL, purchase item, cost, and number of pieces.

Now, to create the table, use the command as given below:

CREATE TABLE cart (SL NOT NULL PRIMARY KEY AUTO_INCREMENT Purchase_item TEXT, Cost INTEGER, Number_of_pieces INTEGER);

You might have noticed that we have given the value we are going to provide for each feature. The Serial Number is a primary key, which means it represents a unique data. The purchase item will be entered as text, while cost and number of pieces will be entered as numbers.

The table is now ready with the field names and the value to be entered to each cell of the table. To see how the table is executed, type the command “DESCRIBE cart”. This will give you a display of a table with the given features.

Field Type Null Key Default Extra
SL Int(11) NO PRI NULL Auto_increment
Purchase Item Text YES NULL
Cost Int(11) YES NULL
Number of pieces Int(11) YES NULL

Step #3: Data Input

Once you create the table, you need to enter data into the respective fields. To do this. Use the SQL command “INSERT INTO”.

To insert values, follow this pattern:

INSERT INTO cart VALUES (NULL, “Rice”, 75, 10)

The “null” value is assigned to SL, as it will follow the command and auto_increment from 1.

The entered value will look like:

SL Purchase item Cost Number of pieces
1 Rice 75 10

Follow the same pattern to enter more values.

Data Science is trending these days. Getting trained in a skill that is much in demand improves your chances of getting hired manifold.

So, choose a good data science course and give your profile an extra edge while competing for career opportunities.

What Does It Take To Be A Good Data Scientist?

Reading Time: 3 minutes

What does a data scientist do?

The importance and applications of data science have grown exponentially over the past decade. Data science is still in its nascent stage and there’s a whole lot to be identified about this discipline. Businesses have started implanting strategic decision-making tools that leverage data science.

Data helps businesses by providing them with hidden insights and helps them predict the future outcome of their decision. This helps organizations to make a better business decision.

Let’s delve deeper into what these data scientists do and how it helps the organizations.

  • Finding a solution to business problems

Data ScienceOne of the most basic and key responsibilities of data scientists in an organization is to identify existing challenges and problems that a business is facing and finding solutions to remedy the situation. This might seem like a generic responsibility of every important professional but the main difference here is that data scientists use tons of relevant data to find the problem.

They try to come up with solutions after properly assessing the situation using various analytical tools that provide them with useful insights. They leverage statistical analysis, data visualization and mining techniques to provide effective solutions.

  • Find out relevant data using complex research

Data Science CareerThe 21st Century businesses are complex than ever, there are various factors that determine the fate of an organization. With the number of complexities that exist, it’s very difficult to figure out what impacts your business and how it does that.

Data scientists simplify this for organizations by studying all variables affecting a business. They use complex research work to identify the variables that have a maximum impact over the business and which are highly relevant.

  • Identify patterns and trends

Another important work of a data scientist that helps businesses is to identify patterns and trends. Data scientists use sophisticated data analysis techniques to find trends and patterns from the data sets at hand. These data sets are generally historical records of the organization. It helps them to identify the existing patterns and trends which is used to make predictions regarding the future movement of the variables.

How to become a data scientist?

Data Science CourseData science is one of the most in-demand skills in the industry and given the wide range of applications that it has, the demand for a data science professional will continue to rise in the future. One of the most common questions in the minds of data science aspirants is how to become a data scientist? There is no specific answer to this particular question. It depends on what stage of your career you are at and the skillset that you have.

A data science course by reputed institutions such as Imarticus Learning guarantees placement with top-notch firms in the industry in addition to providing relevant knowledge and skills. It also helps you provide guidance from the industry experts who are highly experienced in this domain.

Let’s delve deeper into some of the most prominent skills for data scientists that you should hone if you are planning to opt for a career in this field.

Analytical skills

One of the key skills that are required in this profession and that forms the base of all your work is your analytical skills. One should have an analytical mindset and should be able to identify trends and patterns from a big chunk of data. You should be able to assess a situation from a different perspective to reach a successful conclusion. One should be trained to work with software like Python and R and should be equipped enough to handle large volumes of data.

Problem-solving skills

Another important skill that you need to work on is your problem-solving skills. You need to use data to figure out challenges that exist in the business. After you have figured out the problems you will have to provide a solution using data analytics tools that will help the business to achieve its goals and objectives.

Pursue a Career in Data Science: Why Is This The Perfect Time (COVID – Pandemic)?

Reading Time: 2 minutes

In a recent article published by LinkedIn, the organization reported a 25% increase in the number of data science professionals in India alone. On a global scale, this number is close to 37%. If you have been wanting to pursue a career in data science, then now is the right time to chase that dream, and in today’s article, we will tell you why?

Let’s get started.

Why Should You Pursue a Career in Data Science in 2020?

Post the COVID-19 crisis, the world has shifted to a completely remote work environment, and as predicted, the amount of data that is available now for collection has increased rapidly. As companies keep collecting a variety of different data sets, the need for expert data scientists are swiftly on the rise.

Career in Data Science in COVID 19 PandemicThe key concept behind this rise being, companies, need experts to analyze the data that is being collected and conclude decisions which not only contribute to short term gains but also long term business advances for the business.

Along with this, since the demand for such roles is on the rise, companies are willing to spend more to hire the best talent in the market, thus increasing the overall pay of the profession.

 

Some of the most common designations you can explore in this field include the following:

  1. Data Engineer
  2. Data Analyst
  3. AI Product Manager
  4. Data and Analytics Manager
  5. Database Administrator
  6. Business Analyst

How to Get Started With a Career in Data Science?

Now that you know the why of why you should pursue a career in data science, along with a few of the designations you should pursue, let us explore how you can kick start your career.

21st century is one of the hottest times to pursue a career in data science since millions of job openings are being posted on the regular. While having a degree in science or engineering is a good foundation to pursue a career in data science, if you truly want to stand out, one of the best things to do is to get a professional certification from any of the top recognized companies.

While one of the most obvious advantages of having a certification in data science is the edge it gives you over thousands of applications; the underrated advantage is making it easy for recruiters to spot your talent and choose for the right role.

Conclusion

2020 is a cornerstone in shaping how big data analytics will be used in the future, and thus the decisions you make today on how to pursue and shape your career in data science will determine your success in the future. With technologies such as big data, machine learning and artificial intelligence being readily used by the small to medium scale businesses around the world to increase their capabilities, the need for skilled professionals, who can swiftly analyze this data and extract meaningful insights will be on a constant rise.

In 2020, if you choose to pursue a career in data science, it can easily be estimated that your future will be secure for the next generation.

We offer data science courses at our centers in Mumbai, Thane, Pune, Ahmedabad, Jaipur, Delhi, Gurgaon, Bangalore, Chennai, Hyderabad, Coimbatore.

Where Data Science Will Be 5 years From Now?

Reading Time: 3 minutes

Data is everywhere and data science is the perfect m mixture of algorithms, programming, deploying statistics, deductive reasoning, and data interference.

Data is the amalgamation of statistics, programming, mathematics, reasoning, and more importantly, a data scientist is a field that comprises everything that related to data cleaning, preparation, and analysis.

But when thinking about where data science will be 5 years from now, it’s useful to know how data science has made its unique position in the science field over the past five years.

Why is it hard to imagine a world without data?

As of late, advanced data have become so unavoidable and essential that we’ve nearly turned out to be unwilling to deal with anything that isn’t in data. To request that an information researcher takes a shot at something that isn’t digitized. Give them a table scribbled on a wrinkly bit of paper. Or then again, to more replicate the size of what we will discuss, whole libraries of thick books, flooding with tables of data.

Stack them around their work area and they’d most likely run away and never return. It is because the digital codes of information have become essentials and valuable. We cannot do modern work without them.  That’s the reason digitalization of the data is the whole story that makes our business work easier.

What data scientists do on a regular basis?

Data scientist begins their day by converting a business case into the algorithm, analytic agenda, develop codes, and exploring pattern to calculate which impact they will have on the business. They utilize business analytics to not just clarify what impact the information will have on an organization later on, however, can likewise help devise solutions that will assist the organization in moving forward.

So if you are perfect in statistics for data science, mathematics calculations, algorithms, and resolve highly complex business problems efficiently than the position of a data scientist is a round of clock available for you.

If we talk about data science salary, the job, and salary of the data scientist always on the top on in India but all over the world. A career in information particularly appeals to the youthful IT experts due to the positive relationship between the long periods of work experience and higher data science salary.

What does a data scientist actually need?

If you want to explore your career in data science, you are in the right place. Here we suggest you how to learn data science and statistics for data science along with the kind of skills recruiters expecting from you.

First and foremost, before entering in the data science choose the best data science online course. Because with the help of online courses you can build your skills easily and efficiently. Secondly, there are many roles in data science, so pick the one that depends on your background and work experience.

So, now you have decided on your job role and subscribed to the data science online course. The next thing you need to do is when you take up the course is learn data science go through actively, always follow the instructor instructions, the reason we are saying to follow the course regularly because it gives you a clear picture regarding data science skills.

The demand for data science is enormous and businesses are putting huge time and money into Data Scientists. So making the correct strides will prompt an exponential development. This guide gives tips that can kick you off and assist you in avoiding some expensive mistakes.

Data science is the core of the business because all the operations related to the business depend on the data science from statistics to decision making companies are using data science and its story not end here.