NLP vs NLU- From Understanding A Language To Its Processing!

Today’s world is full of talking assistants and voice alerts for every little task we do. , Conversational interfaces and chatbots have seen wide acceptance in technologies and devices.

Their seamless human-like interactions are driven by two branches of the machine learning (ML) technology underpinning them. They are the NLG- Natural Language Generation and the NLP- Natural Language Processing.

These two languages allow intelligent human-like interactions on the chatbot or smartphone assistant. They aid human intelligence and hone their capabilities to have a conversation with devices that have advanced capabilities in executing tasks like data analytics, artificial intelligence, Deep Learning, and neural networking.

Let us then explore the NLP/NLG processes from understanding a language to its processing.

The differences:

NLP:
NLP is popularly defined as the process by which the computer understands the language used when structured data results from transforming the text input to the computer. In other words, it is the language reading capability of the computer.

NLP thus takes in the input data text, understands it, breaks it down into language it understands, analyses it, finds the needed solution or action to be taken, and responds appropriately in a human language.

NLP includes a complex combination of computer linguistics, data science, and Artificial Intelligence in its processing of understanding and responding to human commands much in the same way that the human brain does while responding to such situations.

NLG:
NLG is the “writing language” of the computer whereby the structured data is transformed into text in the form of an understandable answer in human language.

The NLG uses the basis of ‘data-in’ inhuman text form and ‘data-out’ in the form of reports and narratives which answer and summarize the input data to the NLG software system.

The solutions are most times insights that are data-rich and use form-to-text data produced by the NLG system.

Chatbot Working and languages:

Let us take the example of a chatbot. They follow the same route as the two-way interactions and communications used in human conversations. The main difference is that in reality, you are talking to a machine and the channel of your communication with machines.NLG is a subset of the NLP system.

This is how the chatbot processes the command.

  • A question or message query is asked of the chatbot.
  • The bot uses speech recognition to pick up the query in the human language. They use HMMs-Hidden Markov Models for speech recognition to understand the query.
  • It uses NLP in the machine’s NLP processor to convert the text to commands that are ML codified for its understanding and decision making.
  • The codified data is sent to the ML decision engine where it is processed. The process is broken into tiny parts like understanding the subject, analyzing the data, producing the insights, and then transforming the ML into text information or output as your answer to the query.
  • The bot processes the information data and presents you a question/ query after converting the codified text into the human language.
  • During its analysis, the bot uses various parameters to analyze the question/query based on its inbuilt pre-fed database and outputs the same as an answer or further query to the user.
  • In the entire process, the computer is converting natural language into a language that computer understands and transforming it into processes that answer with human languages, not machine language.

The NLU- Natural Language Understanding is a critical subset of NLP used by the bot to understand the meaning and context of the text form. NLU is used to scour grammar, vocabulary, and such information databases. The algorithms of NLP run on statistical ML as they apply their decision-making rules to the natural-language to decide what was said.

The NLG system leverages and makes effective use of computational linguistics and AI as it translates audible inputs through text-to-speech processing. The NLP system, however, determines the information to be translated while organizing the text-structure of how to achieve this. It then uses grammar rules to say it while the NLG system answers in complete sentences.

A few examples:

Smartphones, digital assistants like Google, Amazon, etc, and chatbots used in customer automated service lines are just a few of NLP applications that are popular. It is also used in online content’s sentiment analysis.NLP has found application in writing white papers, cybersecurity, improved customer satisfaction, the Gmail talk-back apps, and creating narratives using charts, graphs, and company data.

Parting Notes:

NLG and NLP are not completely unrelated. The entire process of writing, reading, and talk-back of most applications use both the inter-related NLG and NLP. Want to learn more about such applications of NLP and NLG? Try the Imarticus Learning courses to get you career-ready in this field. Hurry!

How Can You Learn Deep Learning Quickly?

 

Why is Deep Learning important to learn in today’s world of ever-changing technologies? Human capabilities to do tasks especially on very large volumes of data are limited. AI stepped in to help train computers and other devices to aid our tasks. And how does it do so? The evolved devices use ML to learn by themselves recognizing data patterns and arriving at predictions and forecasts very much like the human brain. Hence one would need to learn all of the above-mentioned concepts to even reach the deep-learning possibility.

In order to learn ML, one would need to have knowledge of Java, R or Python and suites like DL4J, Keras, and TensorFlow among others depending on the areas you are interested in. It is also important to have the Machine Learning Course before one delves into deep-learning. And yes there is a lot of statistics, probability theory, mathematics and algebra involved which you will have to revise and learn to apply.

 

If you are interested in learning Deep Learning quickly, here are the top four ways to do so.

A. Do a course: One of the best ways is to scour the net for the best top free MOOC courses or do a completely paid but skill oriented course. Many are online courses and there are classroom courses as well. For the working professional course from a reputed training partner like Imarticus Learning makes perfect sense. Just remember that to learn Deep learning you will need to have access to the best industry-relevant solutions and resources like mentoring, assured placements, certification and of course practical learning.

B. Use Deep Learning videos: This is a good resource for those with some knowledge of machine learning and can help tweak your performance. Some of the best resources of such videos are ML for Neural Networks by the Toronto University, the tutorials of Stanford University on Deep Learning, ConvNet resources on Github, and videos by Virginia Tech, E and CE, the Youtube, etc.

C. Community Learning: There are communities available online like the Deep Learning community and r-learning communities from Quora, Reddit, etc. Such communities can be of immense help once you have a firm grasp of the subject and need to resolve or are practicing your skills.

D. DIY books: There is a wealth of books available to learn Deep Learning and understand the subject better. Do some research on the best deep-learning resources, the limits of it, differences between ML and deep-learning, and such topics. DIY books are easy to read and hard to practice with. Some excellent books are the TensorFlow-Deep Learning, Nielsen’s Neural Networks-and-Deep Learning, and Chollet’s Python and Deep Learning.

The Disadvantages:

  1. Rote knowledge is never really helpful and the syllabus is very vast and full of complicated subjects.
  2. The practice is the key is only acquired through constantly doing relevant tasks on relevant and industry-standard technology.
  3. Mentorship is very important to learn the current best practices.
  4. Time is a constraint, especially for working professionals.
  5. The best value courses are often paid-for courses.
  6. DIY is bereft of certification and hence a measure of your skills.
  7. The DIY approach may also never train you for the certification exams.
  8. Assured placements in the paid for courses are a huge draw for freshers making a career in deep-learning.
  9. There are non-transferable soft-skills that you require and do not find in the packages.
  10. Industry acceptance is often sadly lacking for the self-learning candidates.

Conclusion:

Learning is always a process where reinforcement and practice scores. Though there are many options available to do deep-learning for free and on one’s own, the route is never easy. Thus it seems the paid courses, like the one at Imarticus Learning, is definitely a better bet. Especially if the course is combined with mentorship of certified trainers, assured placements, widely accepted certification, personalized personality-development modules and a skill-oriented approach with tons of practice as the one at Imarticus is.

The Imarticus Learning courses deliver well-rounded and skilled personnel and offer a variety of latest technology courses which are based on industry demand.

Given the above information, the quickest way to master deep-learning definitely appears to be doing a course at Imarticus. If you want to be job-ready from day one, then don’t wait. Hurry and enroll. We have multiple centers in India – Mumbai, Thane, Pune, Chennai, Banglore, Hyderabad, Delhi, Gurgaon and Ahmedabad. So you can consider as per your need!!

 

How Do You Start Learning Artificial Intelligence? Is it Possible to Get Research Work in The Field of AI?

The last decade saw the introduction of Machine Learning Training, Deep-Learning and Neural networks in AI to acquire the capacity to reach computational levels and mimic human intelligence.
The future scope of Machine Learning appears bright with ML enabled AI being irreplaceable and a composite part of evolving technologies in all verticals, industries, production means, robotics, laser uses, self-driven cars and smart mobile devices that have become a part of our lives. It thus makes perfect sense to learn Machine Learning and make a well-paying career in the field. Since the early 50’s a lot of research has gone into making these developments possible, and the trend for continued research into AI has made it the most promising technology of the future.

Why study AI:

AI rules and has become a reality in our lives in so many different ways. From our smartphones and assistants like Siri, Google, Alexa etc, the video games and Google searches we do, self-driven cars, smart traffic lights, automatic parking, robotic production arms, medical aids and devices like the CAT scans and MRI, G-mail and so many more are all AI-enabled data-driven applications, that one sees across verticals and without which our lives would not be so comfortable. Fields like self-learning, ML algorithm creation, data storage in clouds, smart neural networking, and predictive analysis from data analytics are symbiotic. Let us look at how one can get AI skills.
Getting started with AI and ML learning:
To start AI learning the web offers DIY tutorials and resources for beginners and those who wish to do free courses. However, there is a limit to technical knowledge learned in such ‘learn machine learning’ modules, as most of these need hours of practice to get adept and fluent in. So, the best route appears to be in doing a paid classroom Machine Learning Course.

Here’s a simple tutorial to study ML and AI.

1. Select a research topic that interests you:

Do brush through the online tutorials on the topic on the internet. Apply this to small solutions as you practice your learning. If you do not understand the topic well enough use Kaggle the community forum to post your issues and continue learning from the community too. Just stay motivated, focused and dedicated while learning.
2. Look for similar algorithm solutions:
The process of your solution would essentially be to find a fast solution and it helps when you have a similar algorithm. You will need to tweak its performance, make the data trainable for the ML algorithm selected, train the model, check the outcomes, retest and retrain where and when required by evaluating the performance of the solution. Then test and research its capabilities to be true, accurate and produce the best results or outcomes.

3. Use all resources to better the solution:

Use all resources like data cleaning, simple algorithms, testing practices, and creative data analytics to enhance your solution. Often data cleaning and formatting will produce better results than self-taught algorithms for deep learning in a self-taught solution. The idea is to keep it simple and increase ROI.

4. Share and tweak your unique solution:

Feedback and testing in real-time in a community can help you further enhance the solution while offering you some advice on what is wrong and the mentorship to get it right.

5. Continue the process with different issues and solutions:

Make every task step problem you encounter an issue for a unique solution. Keep adding such small solutions to your portfolio and sharing it on Kaggle. You need to study how to translate outcomes and abstract concepts into tiny segmented problems with solutions to get ahead and find ML solutions in AI.

6. Participate in hackathons and Kaggle events:

Such exercises are not for winning but testing your solution-skills using different cross-functional approaches and will also hone your team-performance skills. Practice your collaborative, communicative and contributory skills.

7. Practice and make use of ML in your profession:

Identify your career aims and never miss an opportunity to enroll for classroom sessions, webinars, internships, community learning, etc.
Concluding notes:
AI is a combination of topics and research opportunities abound when you learn to use your knowledge professionally. Thus the future scope of Machine Learning which underlies AI contains newer adaptations which will emerge. With more data and emerging technological changes, the field of AI offers tremendous developmental scope and employability in research and application fields to millions of career aspirants.
Do a machine learning training at Imarticus Learning to help with improving your ML practical skills, enhance your resume and portfolio and get a highly-paid career with assured placements. Why wait?

Ships Of The Future -Will Run on AI Instead of A Crew?

Technology has taken a high route since Artificial Intelligence has gained immense impetus over the years. Alexa and Siri have become household names as millions of their users, start the day, and close the same with them.

Artificial Intelligence is also seen to be transforming a number of industries including the shipping industry.

This means that your cruise ships are about to you take you into the future. They will be driven by artificial intelligence instead of a crew member. In the year 2017, two friends Ugo Vollmar and clement Renault were all set to work on a self-driving car project until they stumbled upon an article that talked about autonomous shipping which made them sail in a different direction.

Human resources and autonomy 

Autonomy would operate in a different manner when it comes to water than it does for roads. In the case of waterways, it will not completely eliminate the human resources on board. This is because when it comes to cars, there is only one person that takes over the entire control to operate it while for ships, there is a bare minimum of at least 20 crew members on board, all of them being assigned crucial duties.

Thus, in the case of roads, that one person can be completely replaced by autonomy, but not all the crew members can be replaced by autonomy in its entirety.

“Diesel engines require replacement of filters in oil systems—the fuel system has a separator that can get clogged. There are a lot of these things the crew is doing all the time” quoted Oskar Levander, the head of Rolls Royce’s autonomous system efforts.

This is why it can be said that the helm is most likely to be operated with autonomy using a robot or remote control while a part of the crew can help in taking care of the vessel. In addition to this, these automated journeys will have special rules created by the International Maritime Organisation which is most likely to happen in the coming years.

Key examples

One of the examples of companies that have employed artificial intelligence in order to robotize ships is Shone. They visualize employing artificial intelligence by planting sensors like radar and cameras that can help simulate a number of hazards around the ship and to navigate amidst them. Autonomous shipping helps in cutting costs of consumer goods as well as provides a safer environment for passenger ferries and cruise liners. Tugboats and ferries are likely to operate autonomously for at least a part of the time, the ones that only operate for shorter distances and time duration.

Finland and Norway have staked out testing areas for pioneering the commercial applications of autonomous systems that are likely to happen on the small coastal waters of Scandinavia. Rolls Royce orchestrated the first-ever public demonstration of an autonomous voyage by a passenger’s vessel. It was a state-run vessel that happened to avoid obstacles for 1 mile and also docked automatically.

Rolls Royce also revealed that on the day of the demonstration and the trails before that, the vessel was able to perform well even in rough waters, handling snow and strong winds which indicates that we are moving towards a world that will have machines employed everywhere to augment our experiences and make life easier.

Transportation made easy

At ports like Scandinavia where small ferries play a crucial part in the transportation network, in order to carry cars across fjords and connecting them to islands, autonomous systems will have it made it a lot easier. This is because the remote-control systems could allow for an expansion of service at the routes that are not very long, especially during the late hours and help reduce staffing, thus cutting costs, increasing efficiency and saving time. You can save big bucks by employing autonomous systems as the crew costs are really high and you can eliminate a big part of the same with artificial intelligence.

In a nutshell, we can say that we are moving towards living in a world that will be much easy to live in. Machine learning Training and Artificial Intelligence are taking over various industries eliminating its glitches and making operations better and more efficient.

For more details in brief and further career counseling, you can also search for – Imarticus Learning and can drop your query by filling up a form from the website or can contact us through the Live Chat Support system or can even visit one of our training centers based in – Mumbai, Thane, Pune, Chennai, Hyderabad, Delhi and Gurgaon.

AI is Now Being Used in Beer Brewing!

AI is now being used in beer brewing -from creating unique beer recipes to adapting recipes as per customer feedback. AI is doing it all…

With the advent of the digital revolution, Artificial Intelligence (AI) has gained immense impetus in recent years. Today, everyone is connected to everything because of the growing importance of the Internet of Things. Right from the time, you wake up until the time you close your day, technology plays a key role in taking you forward.

Alexa and Siri have now become household names and no doubt, why “Her” was a blockbuster in the cinemas. AI and Machine Learning are here to make your work easier, and your life smoother. It is also brilliant to know how even breweries today are using AI to enhance their beer production.

Brewed with AI
As discussed earlier, digitization and technology have significantly impacted our lives across spectrums, and there are several examples of various companies that have started employing AI in their processes to serve their customers better. Breweries are nowhere behind in this race of digitization, so let us discuss a few examples of how they are using AI in order to enhance the experience of the consumers.

Intelligent X
Intelligent X is one of the best examples of how a platform employed AI to enhance their beer. It came up with the world’s first beer, which is brewed with Artificial Intelligence Course and advances itself progressively based on customer feedback. They use AI algorithms and machine learning to augment the recipe and adjust it in accordance with the preferences of the customers. The brewery offers four types of beer for the customers to choose from:

  • Black AI
  • Golden AI
  • Pale AI
  • Amber AI

In order to brew the perfect beer that pleases all your senses, all you need to do is sign up with IntelligentX, train their algorithm according to what appeals to your palate, and you are good to go. In addition to this, you can follow the URL link on your beer can and give your feedback so that they can create a beer you would like. These beers come in classy and minimally designed black cans that reflect their origin and give a feeling that what you are experiencing is the beer from the future.

Champion Brewing
Another example of a very intelligent deployment of AI in brewing beer is that of Champion Brewing. They used machine learning in the process of developing the perfect IPA. They took the big step by initially getting information regarding the best and the worst IPA selling companies to get an insight into how to go about the entire project. Based on the same, did they determine the algorithm of brewing the best IPA with their AI?

RoboBEER
An Australian research team found out that the form of a freshly poured beer affects how people enjoy it. Building on to this, they created RoboBEER, which is a robot that can pour a beer with such precision that can produce consistent foam, pour after pour. These researchers also made a video of how the RoboBEER poured the beer tracked the beer color, consistency, bubble size, and all the other attributes. They then showed the same videos to everyone who participated in the research in order to get seek their feedback and thoughts with regard to the beer’s quality along with its clarity.
Conclusively, this shows how AI has become the nascent yet a very preferred trend, which is even being followed by the breweries around the world. It has added an unusual turn to the way the perfectly brewed well-crafted beer makes its way to your glass. With the help of this ever-evolving technology, we can anticipate our favorite drinks to be made precisely in accordance with our preference only with the help of your smartphone.

By deriving minutest of the insights right from the foam of the beer till the yeast used in the same, companies these days are striving to deliver their best with the help of immense research and execution from the ideation derived from their research amalgamating it with AI and Machine Learning. Looking at the various examples, we can surely say that we are living in the future in the present.

For more information you can also visit – Imarticus Learning contact us through the Live Chat Support or can even visit one of our training centers based in – Mumbai, Thane, Pune, Chennai, Bangalore, Delhi and Gurgaon.

How have statistical machines influenced Machine Learning?

The past few years have witnessed tremendous growth of machine learning across various industries. From being a technology of the future, machine learning is now providing resources for billion-dollar businesses. One of the latest trend observed in this field is the application of statistical mechanics to process complex information. The areas where statistical mechanics is applied ranges from natural models of learning to cryptosystems and error correcting codes. This article discusses how has statistical mechanics influenced machine learning.
What is Statistical Mechanics?
Statistical mechanics is a prominent subject of the modern day’s physics. The fundamental study of any physical system with large numbers of degrees of freedom requires statistical mechanics. This approach makes use of probability theory, statistical methods and microscopic laws.
The statistical mechanics enables a better study of how macroscopic concepts such as temperature and pressure are related to the descriptions of the microscopic state which shifts around an average state. This helps us to connect the thermodynamic quantities such as heat capacity to the microscopic behavior. In classical thermodynamics, the only feasible option to do this is measure and tabulate all such quantities for each material.
Also, it can be used to study the systems that are in a non-equilibrium state. Statistical mechanics is often used for microscopically modeling the speed of irreversible processes. Chemical reactions or flows of particles and heat are examples of such processes.
So, How is it Influencing Machine Learning?
Anyone who has been following machine learning training would have heard about the backpropagation method used to train the neural networks. The main advantage of this method is the reduced loss functions and thereby improved accuracy. There is a relationship between the loss functions and many-dimensional space of the model’s coefficients. So, it is very beneficent to make the analogy to another many-dimensional minimization problem, potential energy minimization of the many-body physical system.
A statistical mechanical technique, called simulated annealing is used to find the energy minimum of a theoretical model for a condensed matter system. It involves simulating the motion of particles according to the physical laws with the temperature reducing from a higher to lower temperature gradually. With proper scheduling of the temperature reduction, we can settle the system into the lowest energy basin. In complex systems, it is often found that achieving global minimum every time is not possible. However, a more accurate value than that of the standard gradient descent method can be found.
Because of the similarities between the neural network loss functions and many-particle potential energy functions, simulated annealing has also been found to be applicable for training the artificial neural networks. Other many techniques used for minimizing artificial neural networks also use such analogies to physics. So basically,  statistical mechanics and its techniques are being applied to improve machine learning, especially the deep learning algorithms.
If you find machine learning interesting and worth making a career out of it, join a machine learning course to know more about this. Also, in this time of data revolution, a machine learning certification can be very useful for your career prospects.

How can AI be integrated into blockchain?

Blockchain technology has created waves in the world of IT and fintech. The technology has a number of uses and can be implemented into various fields. The introduction of Artificial Intelligence Training (AI) makes blockchain even more interesting, opening many more opportunities. Blockchain offers solutions for the exchange of value integrated data without the need for any intermediaries. AI, on the other hand, functions on algorithms to create data without any human involvement.
Integrating AI into blockchain may help a number of businesses and stakeholders. Read on to know more about probable situations where AI integrated blockchain can be useful.
Creating More Responsive Business Data Models
Data systems are currently not open, and sharing is a great issue without compromising privacy and security. Fraudulent data is also another issue which makes it difficult for people to share data. Ai based analytics and data mining models can be used for getting data from a number of key players. The use of the data, in turn, would be defined in the blockchain records, or ledger. This will help data owners maintain the credibility, as the whole record of the data will be recorded.
AI systems can then explore the different data sets and study the patterns and behaviors of the different stakeholders. This will help to bring out insights which may have been missed till now. This will help systems respond better to what the stakeholder wants, and guess what is best for a potentially difficult scenario.
Creating useful models to serve consumers
AI can effectively mine through a huge dataset and create newer scenarios and discover patterns based on data behavior. Blockchain helps to effectively remove bugs and fraudulent data sets. New classifiers and patterns created by AI can be verified on a decentralized blockchain infrastructure, and verify their authenticity. This can be used in any consumer-facing business, such as retail transactions. Data acquired from the customers through blockchain infrastructure can be used to create marketing automation through AI.
Engagement channels such as social media and specific ad campaigns can also be used to get important data-led information and fed into intelligent business systems. This will eventually help the business cycle, and eventually improve product sales. Consumers will get access to their desired products easily. This will eventually help the business in positive publicity and improve returns on investments (ROI).
Digital Intellectual Property Rights
AI enabled data has recently become extremely popular. The versatility of the different data models is a great case study. However, due to infringement of copyrights and privacy, these data sets are not easily accessible. Data models can be used to show different architectures that cannot be identified by the original creators.
This can be solved through the integration of blockchain into the data sets. It will help creators share the data without losing the exclusive rights and patents to the data. Cryptographic digital signatures can be integrated into a global registry to maintain the data. Analysis of the data can be used to understand important trends and behaviors and get powerful insights which can be monetized into different streams. All of this can happen without compromising the original data or the integrity of the creators of the data.

How Machine Learning is Reshaping Location-Based Services?

Today life is a lot different from what it used to be a decade ago. The use of smartphones and location-empowered services is commonplace today. Think about the driving maps, forecasts of local weather and how the products that flash on your screen are perhaps just what you were looking for.
Location-enabled GPS services, devices that use them and each time we interact and use them generates data that allows data analysts to learn about our user-preferences, opportunities for expansion of their products, competitor services and much more. And all this was made possible by intelligent use of AI and ML concepts.
Here are some scenarios where AI and ML are set to make our lives better through location-based services.

  • Smart real-time gaming options without geographical boundaries.
  • Automatic driver-less transport.
  • Use of futuristic smartphone-like cyborgs.
  • Executing perilous tasks like bomb-disposals, precision cutting, and welding, etc.
  • Thermostats and smart grids for energy distribution to mitigate damage to our environment.
  • Robots and elderly care improvements.
  • Healthcare and diagnosis of diseases like cancer, diabetes, and more.
  • Monitoring banking, credit card and financial frauds.
  • Personalized tools for the digital media experience.
  • Customized investment reports and advice.
  • Improved logistics and systems for distribution.
  • Smart homes.
  • Integration of face and voice integration, biometrics and security into smart apps.

So how can machine learning actually impact the geo-location empowered services?
Navigational ease:
Firstly, through navigation that is empowering, democratic, accurate and proactive. This does mean that those days of paper maps, searching for the nearest petrol station or location, being late at the office since the traffic pileups were huge and so many more small inconveniences will be a thing of the past. We will gracefully move to enhanced machine learning smartphones that use the past data and recognize patterns to inform us if the route we use to commute to office has traffic snarls and provide us with alternative routes, suggest the nearest restaurant at lunchtime, find our misplaced keys, help us locate old friends in the area etc all by using a voice command to the digital assistant like Alexa, Siri or Google.
ML can make planning your day, how and when to get to where you need to be, providing you driving and navigational routes and information, and pinging you on when to leave your location a breeze. No wonder then that most companies like Uber, Nokia, Tesla, Lyft and even smarter startups that are yet to shine are investing heavily on ML and its development for real-time, locational navigational aids, smart cars, driverless electric vehicles and more.
Better applications: 
Secondly, our apps are set to get smarter by the moment. At the moment most smartphones including Google, Apple, Nokia among many others are functioning as assistants and have replaced those to-do lists and calendar keeping for chores that include shopping, grocery pickups, and such.
Greater use of smart recommendatory technology:
And thirdly, mobile apps set smartphones apart and the more intelligent apps the better the phone experience gets.  The time is not far off when ML will be able to use your data to actually know your preferences and needs. Imagine your phone keeping very accurate track of your grocery lists, where you buy them, planning and scheduling your shopping trips, reminding you when your gas is low, providing you with the easiest time-saving route to commute to wherever you need to go and yes, keep dreaming and letting the manufacturer’s know your needs for the future apps. The smart apps of the future would use your voice commands to suggest hotels, holiday destinations, diners, and even help you in budgeting. That’s where the applications of the future are headed to.
In summation, ML has the potential to pair with location-using technologies to improve and get smarter by the day. The future appears to be one where this pairing will be gainfully used and pay huge dividends in making life more easily livable.
To do the best machine learning courses try Imarticus Learning. They have an excellent track record of being industrially relevant, have an assured placement program and use futuristic and modern practical learning enabled ways of teaching even complex subjects like AI, ML and many more. Go ahead and empower yourself with such a course if you believe in a bright locational enabled ML smart future.

How Should You Learn Python For Machine Learning And Artificial Intelligence?

Python is essential for those looking to get into machine learning and artificial intelligence. It is one of the easiest languages to learn and its range of dynamic semantics is unparalleled. It is easy to read and has reduced the cost of program maintenance. Artificial intelligence allows computers and software to ‘learn’ and identify patterns in order to predict outcomes and make conclusions without human interference or supervision. An example of this is the auto-reply feature on Gmail which ‘reads’ emails and predicts the reply. A machine learning engineer develops intelligent algorithms using data that has to be collected, assembled, and arranged first.
Learning Python is not just important, it is essential to machine learning and AI. There are several courses available online where you can get a Python certification and you should pick one that suits your level of expertise. If you are an absolute beginner, you should choose a course that will help you master the basics of Python. You will also learn how to use popular scientific libraries that support Python users.
The next step involves learning about Python in the scientific computing environment. As a machine learning engineer, one of your main tasks will be to work with large amounts of data. Python allows for intricate statistical modeling of said data. It works well with other programs and tools and allows for a wide range of interaction across different players.
An important area with Python learning is classification. Engineers have to be able to develop a model that classifies, identifies, and describes data classes in order to be able to classify unknown data in the future. It is one of the main forms of supervised learning and is an essential tool in your development of AI. Different types of classifier models include support vector machines, logistic regression, neural networks, and decision trees.
Regression is just as useful as classification and it also is an important form of supervised learning. However, unlike classification where there are distinct finite classes, regression works with predicting continuous numerical data.
When you are faced with data that does not have pre-defined classes, then your best tool is clustering. Simply put, clustering puts together data that are similar and separates the ones that differ. This type of data pooling is a form of unsupervised learning.
One of the best ways to learn the different aspects of Python is to learn by doing. There are several places online where you can practice your knowledge. You can also connect with other engineers and programmers and join a community to discuss and learn from others. Kaggle exercises and competitions are recommended to beginners who are looking for a challenge to flex their theoretical skills.
For those who are serious about machine learning, joining a reputed machine learning course will set you on the right path. The right machine learning training is intensive and allows you to learn hands-on with live projects. However, it is still recommended that you have some previous knowledge about Python, math, and statistics before venturing into these intensive courses.

How do you learn math quickly for machine and deep learning?

Synopsis
Math is integral to machine learning and deep learning. It is the foundation on which algorithms are built for artificial intelligence to learn, analyze and thrive. So how do you learn math quickly for AI? 
Machines today have the ability to learn, analyze and understand their environment and solve problems on the basis of the data given to them. This intelligence of the machines is known as artificial intelligence and the ability to learn and thrive is known as machine learning. Algorithms form the crux of everything you do in technology and a machine learning course provides you with an understanding of the same.
Today, individuals who are proficient after completely a machine learning certification are highly sought after and employed. Companies invest a large sum of money to have professionals trained in AI as the applications of AI are vast and cost-effective.  It is a lucrative career to pursue one that involves complex and challenging problems which need to be solved in creative ways.
Mathematics forms the foundation of building algorithms as all programming languages use the basics. Binary code is the heart of machines and the language used to teach them things is a programming language. So do you pursue a machine learning training, and also learn math quickly at the same time?
Data Science Course
Here are a few ways to understand how math is applicable in AI 
Learn the Basics
Important sections such as  Statistics, Linear Algebra, Statistics, Probability and Differential Calculus are the basics of math that one needs to know in order to pursue learning a programming language. While this may sound complicated, they form the basis for machine learning, so investing in courses that teach the above-mentioned functions will go a long way in programming.  There are plenty of online resources that are useful repositories when it comes to learning math for deep learning.
Invest Sufficient Time
Learning math depends on the ability to absorb and apply the math learned in machine learning. Applications of statistics, linear algebra is important in machine learning and hence investing 2-3 months to brush up on the basics go a long way. Constant applications of the lessons learned also helps when it comes to math for AI. Since the principles are the same but the various derivatives and applications can change with the algorithm constant practice and brushing up will help while learning the code.
Dismiss The Fear
One of the biggest ways to learn math quickly for machine learning is by dismissing the fear associated with numbers. By starting small and investing efforts, one can move forward in the code. Since there is no shortage of resources when it comes to learning math, taking the initial step and letting go of any fear towards the subject will greatly help.
Conclusion
Learning a programming language whose principles are based on mathematics can sound daunting and tedious but it is fairly simple once you understand the basics of it. This can be applied while programming for machine learning and artificial intelligence.