Last updated on January 23rd, 2024 at 11:19 am

Data science creates coherent knowledge from incoherent structures of data using statistical processes and tools. In a world where technology reigns supreme even for the most minor issues, data science is a rapidly developing sector and is quite beneficial for anyone interested in exploring this area. 

To understand and work with data science, one has to be familiar with the workings and significance of the tools used to arrange unstructured data. These include Tableau and Power BI, two of the most widely used analytical tools in organising data. 

Read on to learn how a knowledge of these tools can help make a successful career in data science.

Data visualisation and its endless merits

 

Before using tools like Tableau and Power BI, it is imperative to know what data visualisation is and how it works. Imagine reading about the population statistics of a country over decades- the changes in the numbers become a lot easier to understand when presented with graphs or pie charts.

These graphs and charts in data visualisation are often created with the help of the programming language Python. Data visualisation with Python allows it to use libraries like Bokeh and Matplotlib, which contain unique intrinsic units, to create the required graphs from a mass of unstructured collected data. Tableau and Power BI help enhance such effortlessly receptive graphs and more. They also employ linear regression when sorting data- it helps predict the outcome of the dependent variables on the independent ones during data analysis and assists in data visualisation.

Data science using Tableau – Its uses and importance

Any organisation needs its data to be analysed in order to understand its progress and targets and take corresponding action. Founded in 2003, Tableau enters this scenario as an essential analytical tool that helps process the sea of data into great visuals allowing Data Scientists to understand and extract relevant information from the same.

How Tableau operates

Data science and its dependency on Power BI

Like Tableau, Power BI is a Business Intelligence (BI) technology that provides clarity to unorganised data, like creating a meaningful image by putting puzzle pieces together. Power BI was in its initial design in 2010 and was launched in 2011 by Microsoft as a desktop application that allowed anyone to inspect, understand and visualise data on their own.

Basic features of Power BI 

Conclusion

Data science as a branch has been extremely versatile in its growth in recent years, and a simple visual representation of anything complicated always yields a better understanding of the concept. This is why someone starting out with data science needs to be well-acquainted with Tableau and Power BI, their contribution to the field and their interchangeable usage because of their similarities. 

Imarticus’ PG in Data Science and Analytics is a data science course with job interview guarantee that will provide a thorough understanding of data science, the processes and tools needed to work with, the required training needed for upskilling, and consequent employment.