DATA ANALYSIS (6 HOURS)	Applications	Careers	Types of Data	Data Warehousing	MDM Vs. DW	What makes a Data Scientist?	Statistics
PROGRAMMING (8 HOURS)	Basics of Java	Creating Java Application Programs	Implementing Loops, Arrays	Basic Commands of Linux for Better Understanding of Hadoop			
BIG DATA (2 HOURS)	Characteristics of Big Data	Challenges	Popular Tools Used to Store, Process, Analyze & Visualize Big Data	Use Cases for Big Data			
HADOOP ECO-SYSTEM (2 HOURS)	Characteristics	Eco-system & Core Components	Where Hadoop Fits?	When to Use & Not Use	Apache Hadoop Distributions	Job Trends	
HDFS & YARN (4 HOURS)	HDFS Architecture and Features	Files and Data Blocks	Classic vs. YARN	Daemons	Containers	Speculative Execution	HDFS Federation
HADOOP SETUP (6 HOURS)	Deployment Modes	Setting up a Pseudo-distributed Cluster	Hortonworks Sandbox Configuration	HDFS File System Operations	Hadoop Services using Ambari	Web UI	Filesystem & Linux Commands
MAPREDUCE (9 HOURS)	Architecture and Use Cases	Programming	Packaging MapReduce Jobs in a JAR	Mapper & Reducer Counts	Partitioners & Custom Partitioners		
HADOOP STREAMING (2 HOURS)	Hadoop Streaming using Python	Demo: Writing Python Scripts for Streaming	Testing Python Scripts	Executing YARN Jar on Python Script			
PIG (6 HOURS)	Architecture	Pig Latin Basics	Execution Modes	Pig Processing	Built-in and User Defined Functions & Operators		
HIVE (6 HOURS)	Architecture	Warehouse Directory & Metastore	Query Language	Data Processing	Built-in Functions	Joins and Bucketing	Partitioning Data
HBASE (4 HOURS)	Hbase Data Model	Row Oriented v/s Column Oriented	Storage	Architecture	Shell Commands	Bulk Load Data into Hbase	
SQOOP AND FLUME (4 HOURS)	Setup MySQL RDBMS & Sqoop	Sqoop Connectors, Commands	Importing Data to HDFS & Hive	Exporting Data to MySQL	Flume Data Ingestion		
OOZIE (6 HOURS)	Features and Challenges	DAG Architecture	Setting up Database & Oozie Configuration	Creating Workflows	Submitting and Managing Oozie Jobs		
PROBABILITY THEORY (7 HOURS)	Events, Probabilities, Rules	Conditional Probability	Distribution	Central Limit Theorem	Expectation & Variance	Naïve Bayes	Design of Experiments
BASIC STATISTICS (2 HOURS)	Events and their Probabilities	Rules of Probability	Distribution of a Random Variable	Central Limit Theorem	Naïve Bayes		
HYPOTHESIS & OTHER TESTS (6 HOURS)	Hypothesis	Probability	One Sample / Two Samples T-Test	Paired T-test	Proportional, Non Parametric One Sample, Chi Square, Z, F Test		
CORRELATION ANALYSIS (2 HOURS)	Pattern Discovery	Statistics Associated with Cross Tabulations	Chi Square, Phi Coefficient, Contingency Coefficient	Correlation Analysis			
LINEAR REGRESSION (6 HOURS)	Assumptions	Hypothesis	Variable and Model Significance	Regression Table	Anova Table	Multicollinearity	Heteroscedasticity
ANOVA (4 HOURS)	One Way Analysis of Variance	Assumptions	Statistics	Interpreting Results	Two Way Analysis of Variance	Analysis of Covariance	
LOGISTIC REGRESSION (6 HOURS)	Assumptions	Reason for Logit Transform	Hypothesis	Variable Model Significance	Regression Table	Chi Square Test	ROC Curve
MACHINE LEARNING (2 HOURS)
- What is Machine Learning?
- Types of Problems and Tasks
- Features, Models and Design of ML Study

OTHER MODELS (6 HOURS)
- Distance-based and Non Linear Models
- KNN
- K Means
- SVM
- Bayesian Network Models
- Neural Networks
- Perceptron, MLP, Back Propagation

SEMESTER 2: SPECIALIZATION IN EITHER R OR PYTHON 85 HOURS

INTRODUCTION TO R SOFTWARE (10 HOURS)
- Installation
- Architecture
- Installing Packages
- Setting Directories
- Basic Operations
- Scalars, Vectors

LINEAR REGRESSION (8 HOURS)
- Basic Statistics Refresher
- Covariance and Correlation
- Multivariate Analysis
- Assumptions of Linearity
- Hypothesis Testing
- Limitations of Regression
- Case Study For Linear Regression: Case for Prediction Problem

LOGISTIC REGRESSION (6 HOURS)
- The Logistic Transform
- Logistic Regression Modelling
- Model Optimisation
- Understanding the ROC Curve
- Case Study

OTHER MODELS (6 HOURS)
- SVM
- Tuning the Model
- Case Study

DECISION TREE (4 HOURS)
- Classification Trees
- Regression Trees
- Case Study for Decision Tree

SEGMENTATION (4 HOURS)
- Clustering
- Kmeans Algorithm
- Cluster Size vs Definition Optimisation
- K- mediod and Fuzzy K means
- Case for Clustering on Bank Customer Data Set

ASSOCIATION RULE MINING (4 HOURS)
- Supervised Vs Unsupervised Learning
- Recommendation Engines
- Association Rule Mining
- Case Study For Market Basket Analytics

TIME SERIES (4 HOURS)
- Time Series Decomposition
- Moving Average & Exponential Smoothing Methods
- AR, MA, ARIMA, SARIMA, RMSE and MAPE
- Case Study

KNN ALGORITHM (6 HOURS)
- K Nearest Neighbours Algorithm for Classification
- Lazy Learning Notion
- Data Transformations
- Evaluation of Model
- Pros and Cons
- Case Study

NAÏVE BAYES ALGORITHM (6 HOURS)
- Bayesian Theorem
- Probabilities
- Conditional and Joint Probabilities Notion
- Traditional and Naive Approach
- Model Building
- Case Study

ANN & SVM (12 HOURS)
- Neural Networks
- Structure of Network
- The ANN Model
- Training the Model
- Testing and Validation
- SVM
- Tuning the Model
- Case Study

ENSEMBLE MODELS (6 HOURS)
- Entropy
- Information Value
- Decision Tree Pruning
- Model Validation & Performance
- Bagging, Boosting Trees
- Random Forests
- Case Study

PYTHON BASICS (4 HOURS)
- What is Python?
- Installing Anaconda
- Spyder Integrated Development Environment (IDE)
- Python Basics and String Manipulation

DEALING WITH DATA (12 HOURS)
- Data Management
- Lists, Tuples, Dictionaries, Variables
- Crud Operations
- Pydoop, Pymongo, Pyspark
- Data scraping and Collection
- Data Structures in Python Used for Data Analysis: Numpy Arrays, Indexing, Pandas

DATA FRAME MANIPULATION (4 HOURS)
- Data Management
- Lists, Tuples, Dictionaries, Variables
- Crud Operations
- Pydoop, Pymongo, Pyspark
- Data scraping and Collection
- Data Structures in Python Used for Data Analysis: Numpy Arrays, Indexing, Pandas

NATURAL LANGUAGE PROCESSING (8 HOURS)
- Text Preprocessing
- Stemming
- Bag of Words Approach and Naïve Bayes
- Latent Semantic Analysis
- Tagging, Categorization
- Sentiment Analysis

www.imarticus.org
CURRICULUM DIPLOMA IN BIG DATA & ANALYTICS

<table>
<thead>
<tr>
<th>VISUALIZATION (6 HOURS)</th>
<th>Image Processing</th>
<th>Extractors for Image Processing</th>
<th>Using Classifiers</th>
<th>Text Extraction from Image</th>
<th>Data Visualization in Python: Charts, Plots etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER TOOLS (4 HOURS)</td>
<td>Other Predictive Modelling Tools</td>
<td>Machine Learning</td>
<td>Sklearn Library and Statsmodels</td>
<td>Simple Regression Analysis</td>
<td>Multiple Regression</td>
</tr>
<tr>
<td>KNN AND NAÏVE BAYES ALGORITHMS (12 HOURS)</td>
<td>K Nearest Neighbours Algorithm for Classification</td>
<td>Naïve Bayes Algorithm for Multi Class Predictions</td>
<td>Model Building, Testing</td>
<td>Case Studies</td>
<td></td>
</tr>
<tr>
<td>ANN AND SVM (12 HOURS)</td>
<td>Artificial Neural Networks</td>
<td>Structure of Network</td>
<td>Support Vector Machines</td>
<td>Build, Test, Train, Validate Model</td>
<td>Case Studies</td>
</tr>
<tr>
<td>ENSEMBLE MODEL (6 HOURS)</td>
<td>Entropy</td>
<td>Information Value</td>
<td>Decision Tree Pruning</td>
<td>Model Validation & Performance</td>
<td>Bagging, Boosting Trees</td>
</tr>
</tbody>
</table>

SEMESTER 3: SAS, TABLEAU AND INTERVIEW PREP
70 HOURS

<table>
<thead>
<tr>
<th>INTRODUCTION (12 HOURS)</th>
<th>What is SAS?</th>
<th>Submitting a SAS Program</th>
<th>SAS Program Syntax</th>
<th>Accessing Data, Reporting and Formatting Data Values</th>
<th>SAS Datasets</th>
<th>SAS Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA MANIPULATION (12 HOURS)</td>
<td>Reading SAS Datasets, Excel Data, Raw Files, Database Data</td>
<td>Creating Summary Reports</td>
<td>Combining Datasets</td>
<td>Summarizing Data</td>
<td>Observations</td>
<td>Functions in SAS</td>
</tr>
<tr>
<td>BASIC STATISTICS & REGRESSION (12 HOURS)</td>
<td>Measures of Central Tendency</td>
<td>Measures of Dispersion</td>
<td>Skewness and Kurtosis</td>
<td>Linear Regression & Modeling</td>
<td>Logistic Regression & ROC Curve</td>
<td>Model Parameter Significance Evaluation</td>
</tr>
<tr>
<td>TIME SERIES (6 HOURS)</td>
<td>Time Series Decomposition</td>
<td>Simple & Weighted Moving Average Method</td>
<td>Exponential Smoothing Methods</td>
<td>Stationarity of Data</td>
<td>ARIMA Models</td>
<td>Case Studies on Time Series</td>
</tr>
<tr>
<td>TABLEAU (2 HOURS)</td>
<td>Relevance of Visualization</td>
<td>What is Tableau?</td>
<td>Uses</td>
<td>Installation and Architecture</td>
<td>Working with Tableau</td>
<td>Exporting, Connecting and Loading</td>
</tr>
<tr>
<td>DATA AND CHARTS (4 HOURS)</td>
<td>Different Types of Charts</td>
<td>Data Organization</td>
<td>Calculated Metrics</td>
<td>Sorting, Filtering</td>
<td>Totals & Sub Totals</td>
<td>Aggregated Measures</td>
</tr>
<tr>
<td>VISUALIZATION (4 HOURS)</td>
<td>Advanced Visualization</td>
<td>Combination Charts</td>
<td>Reference Lines, Reference Bands</td>
<td>Pareto Analysis</td>
<td>Market Basket Analysis</td>
<td>Mapping</td>
</tr>
<tr>
<td>DATA PRESENTATION (5 HOURS)</td>
<td>Dashboard Layouts and Formatting</td>
<td>Interactivity using Actions</td>
<td>Dashboard Best Practices</td>
<td>Data Summarization</td>
<td>Making Presentations Relevant</td>
<td>Publishing on Web</td>
</tr>
</tbody>
</table>

www.imarticus.org